

Question Paper - II Sub- Chemistry, Std. – 12th

Marks: 70 Time: 3 Hrs

General Instructions:

- 1. Sections A: Q. No. 1 contains 10 multiple choice questions carrying one mark each
- Q. No. 2 contains 8 very short answer type questions carrying one mark each
- 2. **Section B:** Q. No. 3 to Q. No. 14 are **12** short answer-I type questions **carrying two marks** each. Attempt any **eight** questions.
- **3. Section C:** Q. No. 15 to Q. No. 26 are **12** short answer-II type questions carrying **three marks** each. Attempt any **eight** questions.
- **4. Section D**: Q. No 27 to Q. No. 31 are **5** long answer type questions carrying **four mark** Attempt any **three** questions.

SECTION A

Q.1. Select and write correct answer:

10.

- 1. p-type semi-conductor is formed when trace amount of impurity is added to silicon. The number of valence electrons in the impurity atom must be
 - (a) 3
- (b) 5
- (c) 1
- (d) 2
- 2. Nylon -6, 6- polymer is represented as

(a)
$$n = \{NH - (CH_2)_5 - CO\}$$

(c)
$$\begin{bmatrix} O \\ \parallel \\ C - (CH_2)_5 - NH \end{bmatrix}_n$$

(d)
$$\begin{bmatrix} O \\ \parallel \\ C - (CH_2)_8 - NH \end{bmatrix}_n$$

- **3.** 2-pentanone and 3-Methylbutan -2-one are
 - (a) Optical isomers
- (b) Geometrical isomers
- (c) Metamers
- (d) Tautomers

- **4.** The optically inactive compound is
 - (a) Glucose
- (b) Lactic acid
- (c) 2-chlorobutane
- (d) 2-chloropropane

- **5.** Among the following the strongest base is
 - (a) $C_6 H_5 N H_2$

- (b) $p NO_2 C_6H_4NH_2$
- (c) $m NO_2 C_6H_4NH_2$

- (d) $C_6H_4(NH_2)_2$
- 6. The following solutions requires three moles of $AgNO_3$, for the complete precipitation of all the chloride ions present in it
 - (a) One litre of 1M [Co $(NH_3)_6$] $C\ell_3$
- (b) Three litres of 1 M [Co $(NH_3)_4$ $C\ell_2$] Cl
- (c) One litre of 1.5 M [Co $(NH_3)_5$,CI] $\mathcal{C}\ell_2$
- (d) All the above
- 7. In the electrolysis of molten $A\ell_2O_3$ with inert electrodes
 - (a) Al is oxidized at anode to $A\ell^{3+}$
- (b) O_2 , gas is produced at anode

(c) O_2 is reduced at cathode

- (d) O_2 is oxidized at anode
- 8. The amount of work done, when 20×10^{-3} kg of Argon (Mol. wt. = 40) expands reversibly from a pressure of 10 atm. to 1 atm. at a temperature, t°C is
 - (a) $-\frac{2.303R(273+t)}{2.303R(273+t)} \times 10^{-3}$
- (b) $+\frac{2.303R(273+t)\log 0.1}{10^{-3}} \times 10^{-3}$

 $(c) + \frac{2.303Rt}{2}$

- (d) $-\frac{2.303R(273+t)}{1}$
- **9.** If mass is expressed in gram then Kb is given by

Question Paper - II Sub- Chemistry, Std. – 12th

Marks: 70 Time: 3 Hrs

(a) $\frac{M_2 \Delta T_b \times W_1}{1000 \times W_2}$ (c) $\frac{M_2 \Delta T_b \times W_2}{1000 \times W_2}$

- (b) $\frac{W_2}{\Delta T_b \times W_1 \times M_2} \times 10000$ (d) $\frac{W_2}{\Delta T_b \times W_1 \times M_2} \times 1000$
- **10.** Which of the following is not acid-base conjugate pair?
 - (a) HNO_2 , NO_2^-

 $(b)CH_3NH_3^+, CH_3NH_2$

(c) C_6H_5COOH , $C_6H_5COO^-$

(d) H_3O^+ , OH^-

- Q.2 Answer the following
 - 1. CsC ℓ crystallizes in cubic unit with $C\ell^-$ at corners and Cs^+ at the centre of the cube. How many CsC ℓ molecules are there in each unit cell?
 - **2.** What are carbohydrates?

OR

Define carbohydrates

- **3.** Find out the EAN of the following compounds.
 - (i) $[Zn(NH_3)_4]^{+2}$

(ii) $[Fe(CN)_6]^{-4}$

- 4. Give uses of $KMnO_4$
- **5.** Give IUPAC name of

- **6.** A reaction takes place in two steps.
 - (i) $NO_{(g)} + C\ell_{2(g)} \rightarrow NOC\ell_{2(g)}$
 - (ii) $NOC\ell_{2(g)} + NO_{(g)} \rightarrow 2NOC\ell_{(g)}$

Identify reaction intermediate

What is the molecularity of each step?

- 7. How will you lower the vapour pressure of a solution?
- **8.** What is standard state of substance?

SECTION B

Attempt any eight

16.

8.

- **Q.3.** Give physical properties of $HC\ell$.
- **Q.4.** Give classification of ether.
- **Q.5.** Give the structures of the following compounds:

3-Bromo-2-methylpentane

2-Bromo-3-ethyl-2-methylhexane

- **Q.6.** Name the factors governing the equilibrium constants of the coordination compounds.
- **Q.7.** A certain reaction occurs in the following steps

(i)
$$\mathcal{C}\ell_{(g)} + \mathcal{O}_{3(g)} \rightarrow \mathcal{C}\ell\mathcal{O}_{(g)} + \mathcal{O}_{2(g)}$$

(ii)
$$\mathcal{C}\ell O_{(g)} + O_{(g)} \to \mathcal{C}\ell_{(g)} + O_{2(g)}$$

- (a) What is the reaction molecularity of each of elementary steps?
- (d) Identify the reaction intermediate and write the chemical equation for overall reaction.
- **Q.8.** Which of the following solution will have higher freezing point depression and why? a. 0.1 molal NaCl b. 0.05 molal $A\ell_2(SO_4)_3$
- **Q.9.** How is hardness of water removed?

Question Paper - II Sub- Chemistry, Std. – 12th

Marks: 70 Time: 3 Hrs

- **Q.10.** Give reasons:
 - (i) The dissolution of ammonium chloride in water is endothermic still it dissolves in water.
 - (ii) A real crystal has more entropy than an ideal crystal
- **Q.11.** Which species in each of the following pairs is better reducing agent under standard state conditions? E° values are given. Give reasons for your answer:
 - (i) $K_{(s)}$ (-2.93 V) or $Mg_{(s)}$ (-2.36 V)
 - (ii) $Co_{(aq)}^{2+}(1.81 \text{ V})$ or $In_{(s)}$ (-0.14 V)
- **Q.12.** Give some examples of reaction where transition metals are used as catalysts.
- Q.13. Calculate $\Delta_r H^{\circ}$ of the reaction $CH_{4(g)} + O_{2(g)} \rightarrow CO_2 + H_2O_{(g)}$ From the following data.

	8			
Bond	С-Н	O=O	C=O	O - H
ΔH° /kJ mol^{-1}	414	499	745	464

Q.14. Why freezing point of solvent is lowered by dissolving a non-volatile solute into it?

SECTION C

Attempt any eight

24.

- **Q.15.** Identify A, B and C and write the complete balanced reaction. Phthallic acid $\stackrel{NH_3}{\longrightarrow} A \stackrel{\Delta}{\rightarrow} B \stackrel{-NH_3}{\longrightarrow} C$
- Q.16. What happens when glucose is treated with (i) Bromine water (ii) Dilute nitric acid
- **Q.17.** Write a note on p-type semiconductor.

OR

Explain p-type semiconductor using an example.

- **Q.18.** Give action of hot and dilute sulphuric acid on
 - (1) Ethoxy ethane
- (2) Methoxy benzene
- (3) 2-Methoxy propane
- **Q.19.** Convert the following.
 - (1) Benzyl alcohol to benzyl cyanide
 - (2) Tert-butyl bromide to isobutyl bromine
 - (3) Aniline to chlorobenzene
- **Q.20.** Explain in brief, the trends in atomic and ionic radii of the transition series.
- Q.21. Arrange the following compounds in the decreasing order of their solubility in water. Ethylamine, diethylamine and triethylamine.
 Ethylamine, n-propylamine and n-butylamine.
 N-butane, n-butyl alcohol and n-butylamine.
- Q.22. Discuss structure and shape of
 - (i) ICℓ
- (ii) ClF_3
- (iii) BrF_3
- (iv) BrF_5
- **Q.23.** What are the units of rate constant of first order reaction?
- **Q.24** Write a note on buffer action of an acidic buffer.
- Q.25 Calculate ΔH° from the following data for the reaction $2C\ell F_{3(g)} + O_{2(g)} \rightarrow C\ell_2 O_{(g)} + OF_{2(g)}$ Given the following data

$$F_{2(q)} + \mathcal{C}\ell F_{(q)} \rightarrow \mathcal{C}\ell F_{3(I)}$$

$$\Delta H^{\circ} = -139.2 \text{kJ}$$

Question Paper - II Sub- Chemistry, Std. - 12th

Marks: 70 Time: 3 Hrs

$$CIF_{3(I)} + 2O_{2(g)} \rightarrow CI_2O_{(g)} + 3OF_{2(g)} \Delta H^{\circ} = +533.4 \text{kJ}$$

 $F_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow OF_{2(g)} \Delta H^{\circ} = +24.7 \text{kJ}$

Explain the mechanism of preparation of L.D.P.? Q.26

SECTION D

Attempt any three:

12

Q.27 (i) Define the terms:

Reference electrode

Standard hydrogen electrode

(ii) Write the cell reaction and calculate the emf of the cell.

$$Pb_{(s)}|Pb^{2+}(1M)||KCI_{(set)}||Hg_2CI_{2(s)}|Hg$$

 E^0 anode = - 0.126 V, E^0 cathode = 0.242 V.

Identify anode and cathode. Name the right hand side electrode.

- Q.28. (i) How will you prepare propan-1-amine from (1) Propane nitrile (2) 1-nitropropane
 - (3) Propanamide
 - (ii) Explain Hoffmann's carbylamines test/Isocyanides test.

OR

Write short on the following:

Carbylamines reaction.

- Q.29. (i) Write a note on stephen's reaction.
 - (ii) Write application of nanomaterials.
- (i) Fill in the blank and rewrite the balanced equation Q.30.

$$CH_3COOH + thionyl \ chloride \xrightarrow{\Delta} \dots \dots \dots \dots + \dots \dots \dots$$

$$CH_3 - CH_2 - COOH + \dots \dots \xrightarrow{\Delta} \dots \dots + \dots \dots + H_3PO_3$$

$$CH_3 - CH_2 - COOH + \cdots \dots \stackrel{\Delta}{\longrightarrow} \dots \dots + \dots + H_3PO_3$$

$$C_6H_5COOH + \cdots \xrightarrow{\Delta} \dots \dots + Phosphorous oxychloride + HCI$$

$$CH_3 - COOH + phosphorous trichloride \xrightarrow{\Delta}$$

$$CH_3 - COOH \xrightarrow{NH_3} \dots \xrightarrow{\Delta} \dots$$

$$CH_3 - COOH + phosphorous trichloride \xrightarrow{\Delta}$$

 $CH_3 - COOH \xrightarrow{NH_3} \dots \dots \xrightarrow{\Delta} \dots \dots$
 $\vdots \\ \dots \dots \xrightarrow{NH_3} \dots \dots \xrightarrow{\Delta} C_6H_5CONH_2$

(ii) Identify 'A' and 'B' in the following conversions $CH_3 - I \xrightarrow{KCN} A \xrightarrow{Na/C_2H_5OH} B$ $CH_3Br \xrightarrow{AgNO_3} A \xrightarrow{Sn/HCI} B$

$$CH_3 - I \xrightarrow{KCN} A \xrightarrow{Na/C_2H_5OH} B$$

$$CH_2Br \xrightarrow{AgNO_3} A \xrightarrow{Sn/HCI} E$$

Q.31. Explain Stereo isomerism in coordination complexes